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The general momentum equation for fluid flow within a porous medium is supposedly 
valid for any fluid-porous medium configuration. One of the main concerns of using the 
general equations refers to the inclusion of both inertia terms, namely, the convective 
inertia term and the Forchheimer term. In this study, we go beyond the important 
discussion about the correctness of including both terms in the general momentum 
equations by focusing upon the effect of the convective inertia term on the heat transfer 
results. The fluid-porous medium system considered here is a cavity bounded by solid 
surfaces with vertical walls maintained at constant but different temperatures. The natural 
convection problem is solved numerically, and the results are compared with a general 
theory developed by using the method of scale analysis. It is demonstrated that the 
convective inertia term effect upon the heat transfer results is minor for 0.01 < Pr < 1, 
10 < Ra o < 104, 10 -8 _ Da < 10 -2, and porosities 0.4 and 0.8. It is also shown that, 
contrary to the general belief, the convective inertial effect upon the heat transfer within the 
cavity is minimized when the Prandtl number is reduced. 
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I n t r o d u c t i o n  

Five major steps can be recognized from an overview of the 
chronological evolution of fluid flow within a saturated porous 
medium theory. 

The first and most basic step is the empirical model 
introduced by Darcy (1856). His model, known as Darcy's law, 
consists of a linear relationship between the unidirectional fluid 
velocity and the pressure gradient in the direction of the flow. 
It has been verified that Darcy's law is valid only when the 
Reynolds number based upon the volume-averaged velocity 
and the pore diameter is O(1) or smaller. 

The range of applicability of Darcy's law was extended in a 
second major step by Dupuit (1863), although in the archival 
literature this extension is usually associated with the work by 
Forchheimer (1901). The nonlinear relationship between fluid 
velocity and pressure gradient verified experimentally for large 
Reynolds numbers was modeled by adding higher-order 
velocity terms to the Darcy equation. 

Next, the friction effect of the interaction fluid-solid was 
investigated by Brinkman (1947). The procedure followed by 
Brinkman consists of using the expression for the drag force 
on a single sphere immersed within a flow of fluid. With this 
expression, the total force acting on a packed bed of spheres is 
then matched with the Darcy bulk frictional drag. The analysis 
results in the inclusion of a friction term proportional to the 
Laplacian of the fluid velocity in the Darcy equation. 

The first throe steps are brought together in a single 
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momentum equation referred to in the literature as the 
Brinkman-Forchheimer-extended Darcy model for fluid flow 
through a porous medium. 

A fourth step can be identified by the model presented by 
Wooding (1957), where the convective inertia term in the 
divergence form is added to the Darcy equation. The 
inconsistency of using the convective inertia term with the 
available number of boundary conditions from the basic Darcy 
equation was noted by Beck (1972). In modeling the inertial 
effect, Beck (1972) recommended the use of a quadratic velocity 
term only, in line with what was proposed by Forchheimer 
(1901). 

The last step was the introduction of a general momentum 
equation for fluid flow through a porous medium. Vafai and 
Tien (1981) introduced the general equation for forced- 
convection heat transfer within a bounded porous medium. The 
general momentum equation include the convective inertia 
term, the pressure gradient term, the Brinkman and 
Forchheimer terms, and the Darcy term. However, in the 
analysis of Vafai and Tien, the convective inertia term was later 
neglected by using scale analysis arguments. 

Recently, the complete general equation was formally 
derived by Hsu and Cheng (1990) for studying thermal 
dispersion in porous media. The applicability of this equation 
is supposed to range f r o m  a low-permeability porous medium 
configuration to a clear fluid configuration (in the present 
context, clear refers to a configuration with no porous matrix). 

It is noteworthy that by including the Brinkman term, the 
general equation accommodates the convective inertia term as 
proposed by Wooding (1957). The nonslip boundary condition 
that comes together with the Brinkman term fulfills the 
requirement pointed out by Beck (1972). In conclusion, the 
general equation incorporates the previous throe major steps, 
namely, the Forchheimer, Brinkman, and Wooding models, 
into the basic Darcy equation. 
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Although it seemed to be a settled issue, the application of 
the general momentum equation for modeling fluid flow 
through a porous medium is still a topic of controversy. For 
instance, the inclusion of the convective inertia term in the 
general equation was considered inappropriate by Joseph et al. 
(1982). They reasoned that the inertial effect is already 
accounted for by the Forchheimer term. However, within the 
past ten years, a large number of studies have been performed 
by using the general equation (with both inertia terms[) to 
model convective heat transfer within fluid-saturated porous 
media. For an up-to-date review of this subject, see Nield and 
Bejan (1991). 

The indiscriminate use of the general equation for numerical 
modeling also has to be questioned regarding the computa- 
tional costs associated with it. For instance, Lage (1992) showed 
for the case of B~nard convection that the inclusion of the 
convective inertia term has no effect upon the heat transfer 
results for a wide range of parameters. Considering that the 
convective inertia term is highly nonlinear, its inclusion 
becomes a costly overpowering of the mathematical model. 

The tendency for universal use of the general momentum 
equation can be partially explained by the lack of experimental 
evidence to strengthen or to rebut this model. Furthermore, 
the similarity between the general equation for flow through a 
porous medium and the equation of motion in a clear fluid 
medium is very convenient from a numerical point of view. For 
instance, it makes it easier for the numerical analyst to solve 
problems where both media are present in the same control 
volume, 

The almost nonexistent emphasis in the heat transfer 
literature about the limitations of the general momentum 
equation was recently pointed out by Nield (1991). These 
limitations are related to the local time-derivative inertia term, 
the viscous Brinkman term, and the convective inertia term. 
The first of these is important only when imposed transients 
(e.g., oscillatory pressure gradient) are of interest. The last two 
are somewhat related: the extra boundary condition needed for 
the inclusion of the convective inertia term comes with the 
Brinkman term. So, from a mathematical point of view, there 
is no sense in arguing about the inclusion of the convective 

inertia term unless the Brinkman term is also included. The 
opposite, however, is not necessarily the case, since the 
Brinkman term can be included in the equation of motion 
regardless of the inclusion of the convective inertia term. 

The limitations on Brinkman's procedure, according to Nield 
(1991), are mainly two: the necessity for including Brinkman 
term is inconsistent for porosities smaller than about 0.6; and 
the viscous effect (justification used for including the Brinkman 
term) is restricted to within a small distance from the solid 
boundaries, so its effect might be neglected. 

The first argument can be easily accepted, although, as also 
pointed out by Nield (1991), practical situations of interest 
where high-porosity media are present do exist and have 
attracted increased interest (Bejan and Lage, 1991; Lee and 
Howell, 1991; Lage and Bejan, 1991). 

The second argument, although correct, is not general. For 
instance, in natural convection flow within a porous medium 
cavity heated or cooled from the sides, the region closest to the 
solid boundaries is the one that dictates the heat transfer 
mechanism within the cavity (Bejan and Poulikakos, 1984; 
Poulikakos, 1985). For this fundamental problem, it becomes 
difficult to justify the neglect of the Brinkman term. 
Interestingly, the same argument was used by Vafai and Tien 
(1981) to justify the inclusion of the Brinkman term in the 
Forchheimer-extended Darcy equation for forced-convection 
heat transfer. 

A very stimulating study by Ettefagh et al. (1991) established, 
for the first time, the individual effects of several flow 
models--namely, Darcy, Forchheimer-extended Darcy, Brink- 
man-extended Darcy, and generalized--on the natural 
convection flow within open-ended cavities. It was shown that, 
for the specific configuration studied, the Brinkman term can 
have a definite influence on the flow for Darcy numbers as low 
as 10 -4 . The importance of including the convective inertia 
term for low Prandtl number media was also pointed out. 

The answer to the question of when the convective inertia 
term should be included for modeling natural convection flow 
is still not clear. In the present work we do not attempt to 
answer this fundamental question in its entirety. We do, 
however, establish a range within which the use of the 
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avg Wall averaged, Equation 9 
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m Porous medium (fluid and solid matrix), Equation 5 
s Stretching, Equation 8 
0 Related to temperature, Equation 5 
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convective inertia term becomes irrelevant for modeling natural 
convection within a porous medium heated from the sides. In 
such a range, the choice of including or not including the 
convective inertia term is a trade-off between the convenience 
of programming and the computer cost associated with solving 
the more complicated model. 

E q u a t i o n s  o f  m o t i o n  

The basic configuration shown in Figure 1 is a cross section of 
a fluid-saturated porous medium cavity with top and bottom 
adiabatic walls. The porous medium is assumed to have 
constant porosity, so the possibility of porosity variation near 
the walls (channeling) is neglected. The walls of the cavity are 
assumed to be impermeable, with the vertical wails being 
isothermal. 

To verify the influence of the convective inertia term, the 
Brinkman term has to be included in the momentum equation. 
For simplicity, the effective viscosity is assumed to be equal to 
the fluid viscosity divided by the solid matrix porosity. 

The general nondimensional set of equations (Vafai and Tien 
1981) that governs the steady-state fluid motion within the 
cavity is 

~U aV 
- - + - - = 0  
~X aY 

(1) 

[r. VU = ___OP + gPr V2U - ~ 2 F  f l~ I U - ~b2pr U (2) 
~X Da Da 

ft. VV = OP $2F - - - -  + e P r  V2V - I P I v  
bY Da 

~b2pr 
- - -  V+ ~b2RaPr 0 (3) 

Da 

17" V0 = V20 ( 4 )  

where 17 is the vector velocity with horizontal, U, and vertical, 
V, components, and absolute value, 1171, equal to x / / ~  + V 2. 
The gradient and the Laplacianoperators, in Cartesian coor- 
dinates, are V = d/r~Xi + ~9/OYj and V 2 = ~92/OX 2 + ~92/dY 2. 

U = V = ~ y = O  Porous medium 

Q 

L 

U=V=0 U=V=O 

0 = 0.5 0 = -0 .5  

0 U = V = ~ y  =0 1 

Figure 1 Two-dimensional fluid-saturated porous medium cavity 
with velocity and temperature boundary conditions 

The boundary conditions required to solve Equations 1 to 4 
are also depicted in Figure 1. 

From left to right, the momentum equation (3) represents 
the balance among the following terms: convective inertia, 
pressure, Brinkman, Forchhcimer, Darcy, and buoyancy. 

The present mathematical model assumes constant thermo- 
physical properties, with the saturating fluid being of the 
Boussinesq-Oberbeck type. Also, the fluid and the porous 
matrix are assumed to be in local thermodynamic equilibrium. 

The dimensional variables and properties (listed in the 
nomenclature) are related to the nondimensional variables 
through the following relations: 

(x, y) (u, v) 
- - ,  (U, v ) = - -  (x, Y)= H ( = J n ) '  

T - (T h + T~)/2 dP2H2(P + PrgY) 
0 =  , P =  , 

[ D a  "~1/2 

F =,  75L- ) 

K v opH3(Th- T,) 
Da = H-~, Pr = - - ,  Ra = (5) 

O~ m VO~ m 

The Ergun (1952) model is already implemented when 
defining the nondimensional inertia coefficient, F, as shown in 
Equation 5. The independent nondimensional parameters that 
govern the heat transfer process within the cavity are the 
modified Prandtl number, Pr, the Rayleigh number, Ra, the 
Darcy number, Da, and the porosity of the solid matrix, $. 

The effects of the convective inertia term are obtained by 
comparing the results obtained by using the set of general 
equations with the results obtained by neglecting the convective 
inertia term from Equations 2 and 3. 

N u m e r i c a l  m e t h o d  

The numerical method chosen for this investigation is the 
finite-volume method (Patankar, 1980). Discretized (algebraic) 
equations are obtained by integrating the governing equations 
1-4 over small control volumes. A power-law scheme, based 
on the local P~let number, is used to complete the 
discretization. The resulting set of algebraic equations with 
proper boundary conditions is solved by the Tri-Diagonal- 
Matrix-Algorithm in a line-by-line fashion. 

The convergence of the numerical solution is monitored 
locally by the maximum absolute temperature change and by 
the maximum relative velocity change between two consecutive 
iterations, i and i + 1, respectively: 

MAXI(0)i+ x _ (0)il < 10- s (6) 

MAXI (U , V)'+ ' -  (U, V)'] 
(U, V); < 10 -s  (7) 

The absolute error used for the temperature convergence 
criterion as shown by Equation 6, although not common, is 
found to be much more precise for the present case. The relative 
error expression of Equation 7 cannot be reed when the local 
value of the variable at iteration i is zero. However, the 
temperature inside the enclosure is bounded by the limits 0.5 
and -0.5 at the vertical boundaries, so Equation 6 guarantees 
that the temperature values are converged to within at least 6 
significant digits. 

The numerical grid is nonuniform and symmetric in both 
directions. The grid lines are distributed starting from the 
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Figure 2 
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boundaries up to the center of the domain, following the power 
rule 

sj+, = sj + ~JA (8) 

where sj is the spatial location of t h e f t  grid line (sj is measured 
away from the boundary), and ~, and A are, respectively, the 
rate of grid stretching and the spacing between the first grid 
line and the boundary (base). 

Grid accuracy tests are based upon the Nusselt number 
defined as the nondimensional wall-averaged heat flux, 

N u =  q'.',=H = _ fo 0(_~) dY (9) 
k=(Th - T=) x=o or I 

Tests are performed following the guidelines presented by 
Manole and Lane (1993). For instance, we present in Figure 2 
the results of the accuracy tests for the case Ra = 106, Pr = 1, 
Da = 10-2, and porosity equal to 0.4. The three curves in the 
top half of the graph present the Nusselt number variation with 
the grid base, A, for 20 x 20, 40 x 40, and 60 x 60 grid lines. 
The corresponding computer time, in CPU seconds of a DEC 
5000-240 workstation, is shown by the three curves in the lower 
half of the figure. For the present case, a 60 x 60 grid is chosen 
with the grid base value, A, equal to 2.5 x 10 -a. 

The present computer program is also validated against the 
results reported by Ettefagh et al. (1991) for several different 
cases using the Forchheimer-extended and the Brinkman- 
extended Darcy models. The Nussdt numbers differ by less 
than 4 percent. For the Darcy model, a comparison with the 
available results from the literature was reported by Manole 
and Lage (1993). 

N u m e r i c a l  r e s u l t s  

In the present study, the following ranges are investigated: 
10 -s_< Da_< 10 -2 , 0.01 _< Pr < 1, and 10 ~ Rap_< 10". 

10 4 10 5 10 6 104 10 5 10 6 
R a  R a  

_ 1 0 %  

MYI  I 
I 

10 4 10 5 10 6 10 4 10 5 10 6 
R a  R a  

Figure 3 Maxima of momentum terms: P--pressure. BruBrinkman, Bu---buoyancy, D--Darcy, F~Fomhheimer, I---convective inertia. 
= 0.4, Pr = 1, Da = 10 -2. The top graphs neglect the convective inertia term; the bottom graphs include the convective inertia term 
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The Darcy-modified Rayleigh number, Rap, 

Rap = RaDa (10) 

is a new parameter that becomes increasingly important as the 
Darcy number is reduced. In fact, when Da ~ 0, Ray becomes 
the only parameter to influence the solution of Equations 1-4. 

The representative porosity values of 0.4 and 0.8 are used to 
investigate how the porosity affects the convective inertial heat 
transfer effects. 

The strategy used by Lage (1992) is followed here to check 
the effect of the convective inertia term. After obtaining the 
numerical results for a specific case, the maximum values for 
each of the terms of the momentum equations 2 and 3 are found 
within the numerical domain. The procedure is then repeated 
for the same case neglecting the convective inertia term from 
Equations 2 and 3. 

For Darcy number equal to 10-2, Prandtl number equal to 
1, and porosity equal to 0.4, Figure 3 compares each term of 
the horizontal momentum equation, Mx, and of the vertical 
momentum equation, Mr. The top graphs are obtained by 
neglecting the convective inertia term from the momentum 
equations, while the bottom graphs are obtained by including 
it. The results for the smaller Darcy number investigated here, 
Da = 10 -s, are presented in Figure 4. 

It can be observed in Figure 3 that the Darcy, D, and the 
Forchheimer, F, terms are consistently smaller than the 

pressure term. As expected, the convective inertia term, I, 
increases in importance as the Rayleigh number is increased. 
Although the same observation can be extended for the Darcy 
and the Forchheimer terms, their rates of increase are smaller. 

The graphs on the right side of Figure 3 show the crossing 
between the maxima of the Forchheimer term and the maxima 
of the Darcy term. For Rayleigh number greater than 
approximately 3 x 10 4, the Darcy term becomes progressively 
smaller than the Forchheimer term. This could indicate the 
flow switching from the Darcy regime to the Forchheimer 
regime. Note, however, that the maxima of both terms are at 
least one order of magnitude smaller than the maxima of the 
pressure term, P, for the whole Rayleigh range. 

The convective inertia term effect upon the other momentum 
terms seems to be minor when the top and bottom graphs of 
Figure 3 are compared. 

The effect of the convective inertia term upon the other terms 
is even smaller, if not negligible, when the Darcy number is 
reduced (Figure 4), being noticed only upon the horizontal 
Brinkman momentum term, Br. For this case the maxima of 
the Forchheimer term no longer crosses the maxima of the 
Darcy term, with the Forchheimer term being consistently 
smaller. 

One important aspect to note from both Figures 3 and 4 for 
the vertical momentum terms, Mr, is the almost perfect 
matching between the maxima of the pressure gradient term, 
P, and the maxima of the buoyancy term, Bu. This important 

1012 1012 
M x My 

101o P lOlO 

lOS! 10 8 

10 6 10 6 

10 4 10 4 

102 10 10: 10 ,2 102 . . . . .  iO 10 . . . . . . .  iO 11 . . . . . . .  iO 12 

R a  R a  102[ 1012[  
M olo  olo 

101o 1011 1012 101° 1011 1012 
R a  R a  

Figure 4 Maxima of momentum terms: P--pre~ure, Br--Brinkman, Bu---buoyancy, D---Dercy, F--Forchheimer, I--convective inertia. 
= 0.4, Pr = 1, Da = 10 -s. The top graphs neglect the convective inertia term; the bottom graphs include the convective inertia term 
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observation, obtained numerically, is used to simplify the 
theoretical considerations presented in the next section. 

The different magnitudes of the convective inertia term are 
compared in Figure 5. The Darcy-moditied inertia term, ID, 
defined as the maximum inertia term value multiplied by the 
corresponding Darcy number, is plotted against the Darcy- 
modified Rayleigh number, Raw It can be seen that the value of 
the convective inertia term, in both directions, increases by a 
factor of 10 when the Darcy number is increased from 10 -6 to 
10 -2. Not plotted in Figure 5 are the results for the case 
Da = 10 -s  when the value of the convective inertia term is 
negligible. 

. . . .  

Da=lO'2~. 

0.6 

0.4 

0.2 

0 , 
0 2 4 6 8 10 Ravxl03 

Figure 5 Maximum values for the horizontal, Mx, and vertical, My, 
momentum equation convective inertia terms. Pr ffi 1 and ~ = 0.4 
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10-2 

Br P Bu 

Figure 7 Isolines of the vertical direction momentum equation 
terms. ~ = 0.4, Pr = 1, Rag = 104 

D a  
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Figure 6 Isolines of the horizontal direction momentum equation 
terms. ~ = 0.4, Pr = 1, Rap ---- 104 

2O 

Nu 

15 

I0 

5 

• =0.4 ] 

B a l l 0  -2 Da=10 4 / 

1 

. o.I 
Pr = 0.01 . " 

, , J , , , , , i  . . . . . . . .  i , , L , , , , , I  . . . . .  , , ,  

10 4 10 5 10 4 10 7 10 s Ra 
Figure 8 Porosity effect on the numerical Nusselt number obtained 
by including convective inertia term (dashed line) and by neglecting 
the convective inertia term (continuous line) 

Figures 6 and 7 present the isofines for all the terms of the 
momentum equations for R a p =  10 3, and Da = 10 -2 and 
Da = 10 -s, respectively. As noted before in the analysis of 
Figures 3 and 4 for the vertical momentum terms, there is a 
strong similarity between the isolines of the buoyancy term and 
the isolines of the pressure term. 

The isolines of the convective inertia term show the locations 
of the acceleration and deceleration of the flow. For instance, 
in the Y-direction (Figure 7) for Da -- 10 -2, starting from the 
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Figure 9 Darcy and Prandtl numbers effect on the numerical 
Nusselt number obtained by including convective inertia term 
(dashed line) and by neglecting the convective inertia term 
(continuous line) 

lower left comer, the fluid accelerates upwards, moving close 
by the hot vertical wall. Near the mid-height of the wall, the 
flow starts to decelerate towards the upper left corner. The 
process is reversed in the cold vertical wall. 

Figure 8 shows the direct effect of the convective inertia term 
upon the Nusselt number. The dashed lines are obtained by 
neglecting the convective inertia term from Equations 2 and 3. 
The inertial effect increases with Darcy, being noticeable for 
Da = 10 -2 or larger. A somewhat unexpected result is the 
Prandtl number effect: the convective inertial effect is reduced 
with the decrease of the Prandtl number. To investigate if this 
is the case also for a high- porosity medium, results for qb = 0.8, 
Pr = 0.01, and Da = 10 -2 are obtained and presented in 
Figure 9. Indeed, the relative convective inertial effect is roughly 
the same for both porosities. 

Theoretical analysis 

The effective range of the convective inertia term can be pre- 
dicted theoretically by first writing the momentum equation in 
the Y-direction, Equation 3, in a scaling form: 

V ~b2F V 2, - $2p-~r V, $2RaPr 0 (11) 
V 2 ~ - A P ,  - $ P r  62, Da Da 

For fluid-saturated porous media with Prandtl number 
greater than 1, Equation 4 gives the proper scale for 6 as V- 1/2 
(note in this case (Bejan 1984), that the thermal boundary-layer 
thickness, 60, that appears in Equation 4 scales with the 
distance between wall and velocity peak, 6). Equation 11 can 
then be written, relative to the scale of the convective inertia 
term, as 

0.143~ t/2 Pr ~b 2 ~b 2 
1 ,-~ -q~ Pr, Da 1/2 ' V D a '  2V 2 RaPr (12) 

In line with the numerical results presented previously, the 
pressure gradient term, AP, of Equation 11 is assumed to have 
the same scale as the buoyancy term, OZRaPr0, so it is neglected 
in Equation 12. This simplifies the analysis by avoiding the 
usual cross-differentiation of the momentum equations 2 and 

3 to cancel the pressure gradient term. Also, the inertia coeffi- 
cient, F, of Equation 11 is replaced by the relation shown in 
Equation 5, and the nondimensional temperature scale, 0, is 
replaced by 0.5. 

Equation 12 reads, from left to right, a balance between the 
following terms: inertia, Brinkman, Forchheimer, Darcy, and 
buoyancy. The only term that cannot be neglected in any 
circumstances is the buoyancy term, the "motto"  of the natural 
convection phenomenon. 

An equivalent of Equation 12 for systems with porous 
Prandtl number O(1) or smaller (in this case (Bejan 1984), the 
thermal boundary-layer thickness in Equation 4 scales with 
6/Prl/2), can be obtained by simply substituting the scale of 6 
in Equation 11 by 

Equation 12 can be used to find a general expression for the 
velocity scale. Solving the quadratic equation in V and discard- 
ing the negative root (remember that by using 0 ~ 0.5 it is 
implicit that the scale analysis is being peformed within a region 
close to the hot wall where V > 0), the velocity scale is obtained 
a s  

V , . ~  

Pr ~b 2 _ - - .  pr2~b* 2 0.143~bt/2 1/2 
Da ~-[--D-~-a 2+2~b SaPr( l+ObA(Pr)Pr+ D----~ ) 1  

[ 0.143~1/2~ 
211 + qbA(Pr)Pr + 
\ 

(14) 

The different scales for 6 are accounted for in Equation 14 by 
the new function A(Pr). For Pr > 1, A(Pr) is set equal to 1, and 
for Pr < 1, A(Pr) becomes equal to P r -  x. 

Equation 9 provides the Nusselt number scale 

1 
Nu ~ -- (15) 

26o 

where, from scaling equation 4, 6s ", V-1/2, and therefore 

V1/2 
Nu ~ (16) 

2 

Combining Equations 14 and 16, a general correlation for the 
Nusselt number is found as 

1 
N U N -  

2 

prO2 rp&o, ~ i/2 

Da L Da2 0"143~1/2~] 1/2 / -t- 2~b 2 RaPr(1 + ~bA(Pr)Pr + ~ ] j  

0.143~bl/2 ~ 
2 l + ~ A ( P r ) P r +  ~ -] (17) 

Each group on the right side of Equation 17 refers to one term 
of the momentum equation 3. Within parentheses we have, 
from left to right, groups that refer to the convective inertia 
and the Brinkman and Forchheimer terms. In the numerator, 
multiplying the parentheses, we have the buoyancy group and 
the other two groups that refer to the Darcy term. 

It is noteworthy that Equation 17 indeed reduces to the 
correct Nusselt number scale for the Forchheimer regime (Nield 
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and Bejan 1991) when the groups related to the Darcy, convec- 
tive inertia, and Br/nkman terms are set equal to zero: 

Nu ~ 0.68403/aDal/S(RaPr) 1/4 (18) 

The same is true for the clear fluid case when the groups relative 
to Darcy and Forchheimer terms are set equal to zero (Bejan 
1984): 

RaPr ~1/, (19) 
Nu ~ 0.42 1 + A(Pr)Pr) 

The present theoretical analysis provides, for the first time, 
a general correlation for the Nusselt number that is valid for 
the entire range covered by the general equations 1-4. 

Equation 17 can also be used to show when the convective 
inertia term of the momentum equations 2-3 affects the Nusselt 
number. This effect is shown in Figure 10, where the Nusselt 
number obtained by using Equation 17 is shown by continuous 
lines and the Nusselt number obtained after neglecting the 
convective inertia term in Equation 17 is plotted with dashed 
lines. The neglect of the convective inertia term is obtained by 
replacing the expressions within parentheses in Equation 17 by 
a different expression, as shown in Equation 20. 

( 0"143''/2'~ ( 0.143~b'/2'~ 
I + 0 A ( P r ) P r +  Da~/2 ] - ,  0A(Pr)Pr+ ~ } (20) 

Fina l  r e m a r k s  

The numerical investigation reported here shows that the 
convective inertia term effect upon the heat transfer results is 
negligible for Darcy number smaller than I0 -2. Furthermore, 
by reducing the Prandtl number this effect is reduced even 
more. 

The porosity of the medium has a minor influence on the 
inertial effect over the Nusselt number, the effect being slightly 
reduced when the porosity is increased. 

From the numerical calculations, the largest discrepancy that 
is observed in the Nusselt number by not including the convec- 
tive inertia term on the momentum equations is about 40 
percent. This discrepancy is obtained for Prandtl number equal 
to 1 and Darcy number equal to 10-2, with the Darcy-modified 
Rayleigh number being the largest investigated in here, equal 
to 10 4. 

A theoretical study based on scale analysis strengthened the 
conclusions drawn from the numerical investigation. The quali- 
tative agreement between theoretical results and numerical 
results is excellent. 

The discussion about the correctness of including the convec- 
tive inertia term in the momentum equation should be re- 
stricted to cases with large Darcy number, Da >_ 10 -2, and 
large Prandtl numbers, Pr ~ 1. However, at this high Darcy 
number, the medium might no longer be considered as porous, 
and the discussion becomes irrelevant. 

As can be observed from Figure 10, the important trends 
related to the convective inertia term obtained by the numerical 
calculations are indeed confirmed by the theoretical results. The 
agreement between the theoretical Nusselt numbers shown in 
Figure 10 and the numerical values presented in Figures 8 and 
9 is notable. 

For Pr < 1, Equation 17 predicts a progressively smaller 
effect of the convective inertia term upon the Nusselt number 
when the Prandtl number is reduced. This tendency has also 
been highlighted during the analysis of the numerical results. 
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Figure 10 Theoretical results: porosity, Darcy, and Prandtl 
numbers' effect on the Nuszelt number obtained by including the 
convective inertia term (dashed line) and by neglecting the 
convective inertia term (continuous line) 
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